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1 Dissertation topic

Nowadays, recommender systems are one of the key components of different con-
sumer services from e-commerce to social media [2, 10]. It helps to navigate
through the large volume of items empowering the user experience. The meth-
ods in the fields vary from classic matrix completion techniques to modern ones
inspired by NLP sequence models. One of the prominent approaches is to consider
the recommender systems as a link prediction problem on bipartite user-item inter-
action graphs. The graph machine learning and network embedding field recently
emerged but still requires adaptation to efficiently solve recommender systems
tasks.

2 Object of the research

Figure 1: Generic scheme of recommendation models

The object of the dissertation is recommender systems. Figure 1 describes the
generic scheme of a recommender system problem. The model receives a set of
users, items, their features and interaction log as input. The output of a model
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is an item or slate of the most relevant items for a given user that optimize user
engagement (e.g. likes, time spent in the app) or business effect (e.g. expected
income from item impressions). In section 3.2 we explain classic recommender
approaches and corresponding problems in detail.

3 Subject of the research

Figure 2: Representations of user-item interactions as graphs for recommender
system problem

Recently, a lot of works propose to consider the recommendation problem as
a problem on graphs [50]. They replace the user-item interaction matrix as a
(bipartite) graph with heterogeneous edges (Figure 2). Such a view allows the
fusion of the content and collaborative (interaction) approaches. Moreover, the
graph representation of the task allows finding similar users or items just by taking
the two-hop neighborhood of the user. So preservation of graph topology can play
an important role. By taking the graph into account matrix completion task can
be transformed into the future link prediction problem (on Figure 2 our goal is to
define whether dotted edges will exist or not). This problem is usually formulated
as a well-studied machine learning problem: ranking or binary classification of
possible (non-presented) edges in the interaction graph.

Figure 3 presents the link prediction pipeline. Firstly, we take a user-item
interaction graph as input. Then, the network structure and other properties are
encoded in continuous representation (more in section 3.3). There are three main
types of network embedding techniques: matrix factorization, random walk based
methods and graph neural networks (GNN). The first group of methods applies
dimensionality reduction techniques to some of the graph matrix representations
(e.g. adjacency, Laplacian). The second group of methods samples random walks
and applies Skip-gram [23] to optimize node co-occurrence in the walks. The
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Figure 3: The pipeline of link prediction for recommender systems
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last group of methods can be generalized by the Message-Passing framework. It
consists of two steps: place non-linear node features transformation on the edge
(encode message) and aggregate all messages for a given node including itself.
Finally, when network embeddings are obtained, we can solve the link prediction
problem with standard table data classification methods. Additionally, we can
apply self-supervised learning to preserve specific graph properties or to pretrain
end-to-end models.

In the dissertation, we have studied different facets of network embedding tech-
niques, their properties and their effect on downstream link prediction problems.
In the section 3.3 objectives and tasks in the research are formulated more pre-
cisely.

3.1 PhD Dissertation Relevance

User behavior has changed dramatically over the last 5-10 years. The speed of
changes in behavioral trends accelerated. So, it is hard to apply the classic methods
to gain impact on client and business value [45, 31]. Therefore, new methods are
required to solve the aforementioned behavioral dynamics issues. Graph-based
recommender systems allow integration of the best part of different methods to
make recommenders more accurate.

3.2 Problems of recommender systems

Figure 4: Common theoretical problems of graph-based recommender systems
development caused by environment dynamics
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Figure 4 describes the problem of recommendation in the dynamic environment.
The set of users, items, and their interaction histories are provided as input. We
aim to select the items that will engage the user in the future. Let us suppose that
we have three time periods in observations: (1) before the COVID-19 pandemic,
(2) lockdown, and (3) slight relaxation of restrictions. Implicit user preferences are
changing over time due to shifts in the environment and user internal evolution.
This example helps us to show the possible problems caused by environmental
dynamics. Firstly, we have new content without any previous interactions (cold
start) [38]. Moreover, obtained historical data are biased towards previous be-
havior (feedback loop) [21] and current model performance degrades due to data
distribution shifts [5]. Finally, the data has a temporal structure [45].

There are plenty of methods to handle mentioned issues. However, they usually
concentrate only on a specific problem and are susceptible to others. The most
popular and powerful models for recommender systems are matrix factorization
techniques [42]. They are aimed to learn the latent representation of users and
items to predict the expected score of its interaction. However, matrix factor-
ization is a static model and is restricted to the already-known set of users and
items. Moreover, they can not handle the features of users and items. So, such
models are susceptible to the aforementioned issues. The factorization machines
[34] generalize the matrix factorization by adding the user and item descriptions.
Thus, they can predict interactions between new users and items. However, these
predictions do not account for any interactions before the full model update. Other
content models [32] usually do not consider user-item interactions at all focusing
on the internal content representations of items and users. Thus, factorization
machines and content models are not capable to solve the online adaptation issue.
Nevertheless, there are a couple of tricks to introduce temporality there. For ex-
ample, one can find most similar items only to the last watched by user item. More
sophisticated models that handle recent changes in user behavior are sequential
recommender system models[45]. It looks at the user as on a sequence of viewed
items. Such vision allows the application of different generative sequence models
from natural language processing like LSTM [55] or Transformers [39]. To embed
the item they can use its internal content embedding. So, they are capable of
partially solving the cold-start problem. However, they have problems handling
new users due to omitting their entity. Thereby, different types of recommender
models focus on different issues but do not solve them at once. So, a new view of
the problem is required.

3.3 Tasks and objectives of the research

Figure 5 describes the main objectives of the work. They are required for build-
ing an efficient graph-based recommender system that is capable to solve issues
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Figure 5: Structure of our research. We increase the setting scale and complex-
ity by developing novel graph-based methods in recommender systems. We start
with a static setting of user-item interactions and apply graph embedding tech-
niques to develop a simple collaborative recommender system (a). Then we focus
on taking into account node-based (b) and edge-based features (c) to build a hy-
brid recommender system capable of solving the cold-start problem. Finally, we
consider dynamics component (d) and exploration techniques (e) to enable the
online-adaptation ability of the underlined models. Each component contributes
to the system and empowers the next step, thus providing a strong baseline for
graph-based recommendations for solving cold-start, temporality, data distribu-
tion shift and feedback loop problems in a novel and efficient way.

caused by environment dynamics: cold start, awareness of temporal structure,
data distribution shifts and feedback loops.

As mentioned before, the recommendation problem is equivalent to the link
prediction problem which is the binary classification of edge existence. It requires
the continuous representation of discrete graph substructures (nodes and edges).
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So, the first objective of the research is to analyze existent network embedding
techniques. However, we can not use only a graph structure due to the cold-start
problem. So, the next two steps are handling of nodes and edges features and
its efficient fusion with collaborative info. The fourth objective is to account for
the temporal structure of the user-item interaction graph, we aim to handle user
interests’ evolution and causality in their actions. It is required to add exploration
in the models to solve data distribution shifts and feedback loop problems. So,
the the last objective is to propose graph-based exploration techniques. After
this step model can provide an efficient recommendation to the user, receive their
feedback and update the user-item interaction graph and node embeddings.

Thus, we postulate the five objectives of the research. We consider these prob-
lems independently and provide a chapter for each one. We gradually complicate
proposed models to develop a final recommender system that covers all given ob-
jectives. One can reformulate the research tasks more precisely as follows:

1. Compare the network embedding techniques to find the best match to specific
graph types and attribute representations under a unified framework

2. Propose an efficient strategy to incorporate node features with structural
information to solve the link prediction (recommendation) problem

3. Propose an efficient strategy to incorporate edge features with structural
information to solve the link prediction (recommendation) problem

4. Propose the method to efficiently preserve the temporality of networks

5. Propose the method to explore the possible user-item interactions to handle
data distribution shifts and feedback loop problems

The main goal of the research is to create new graph methods and show that
they are the best fit to solve all the problems caused by environment dynamics
and intense changes in user behavior.
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4 Key results and conclusions

This section describes the main contributions achieved by the present work, its
novelty, theoretical and practical significance, research methodology and the reli-
ability of the results.

Key aspects/ideas to be defended:

1. Detailed taxonomy of the network embedding techniques and their applica-
tions [17]

2. Benchmarking of the state-of-the-art graph embedding techniques in the link
prediction problem [17]

3. The methodology to automatically extract features in the text-attributed
graphs for link prediction and node classification [19]

4. Novel self-supervised joint network node and edge embedding based on con-
sistent Line graph representation [18]

5. Novel temporal network embedding achieving state-of-the-art results in var-
ious temporal graph machine learning tasks [20]

6. Standardized temporal network embedding evaluation framework and com-
parison of state-of-the-art models under common training setting, provid-
ing new insights and clarification of real-world performance compared to
reported in the original research articles [20]

7. Novel Personalized PageRank [26] based exploration strategy [16]

8. Small-world [49] based exploration strategy [16]

9. The methodology how to apply proposed exploration methods to recom-
mender system with online adaptation in dynamic environments [16]

Scientific novelty. The dissertation concentrates on the recently emerged, poorly
studied problem of graph-based recommender systems using automatic feature
extraction. The work studies five main components required for successful im-
plementation of graph-based recommender: user-item interaction graph structure
encoding, an efficient fusion of structural (collaborative) and node attributes (user
and item content), expressive context-aware edge encoding, temporal properties
encoding and exploration of poorly known user-item pairs. We study each objec-
tive separately in different papers. Each paper conducts a review, comparison and
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analysis of the existent methods and provides strategies for optimal applications.
For the last three tasks, we proposed novel models and methods that improve the
performance of downstream link prediction and recommendation problems.

Theoretical and practical significance. The first two contributions conclude
the current progress in the field and propose new directions and views on further
development. Also, it provides pieces of advice for the practical use of network
embedding techniques. The last three contributions provide novel models that
improve performance on practical datasets. Also, the fourth paper presents the
standardized evaluation framework that allows the acceleration of research in the
temporal graph embedding and graph-based recommender system fields.

The methodology of the research. The study is based on the theory of ge-
ometric deep learning, graph neural networks, network science, recommender sys-
tems, classic machine learning and statistics.

The reliability of the results. It is provided by complex and exhaustive ex-
periments including calculations of the confidence intervals of the metrics on top
with the comparison to the other state-of-the-art methods.

Funding. The research was supported by the Faculty of Computer Science, HSE
University; Russian Science Foundation; HSE University Basic Research Program;
computational resources of HPC facilities at HSE University.
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5 Publications and approbation of research

5.1 First-tier publications

1. Ilya Makarov, Dmitrii Kiselev, Nikita Nikitinsky, and Lovro Subelj. Survey
on graph embeddings and their applications to machine learning problems
on graphs. PeerJ Computer Science, 7:e357, 2021 [17]

2. Ilya Makarov, Mikhail Makarov, and Dmitrii Kiselev. Fusion of text and
graph information for machine learning problems on networks. PeerJ Com-
puter Science, 7, 2021 [19]

3. Ilya Makarov, Ksenia Korovina, and Dmitrii Kiselev. JONNEE: Joint net-
work nodes and edges embedding. IEEE Access, 2021 [18]

4. Ilya Makarov, Andrey Savchenko, Arseny Korovko, Leonid Sherstyuk, Nikita
Severin, Dmitrii Kiselev, Aleksandr Mikheev, and Dmitrii Babaev. Tempo-
ral network embedding framework with causal anonymous walks representa-
tions. PeerJ Computer Science, 8:e858, 2022 [20]

5. Dmitrii Kiselev and Ilya Makarov. Exploration in sequential recommender
systems via graph representations (on review). IEEE Access, 2022 [16]

5.2 Other publications

Dmitrii Kiselev and Ilya Makarov. Prediction of new itinerary markets for airlines
via network embedding. In International Conference on Analysis of Images, Social
Networks and Texts, pages 315–325. Springer, 2019 [15]

5.3 Reports at workshops and conferences

1. Internal seminar of the Sber Recommender Systems Platform, 1 June 2022.
Topic: ”Exploration in interactive recommender systems via graph represen-
tations”

2. 12th International Conference on Network Analysis (NET) 2022. 25 May
2022. Topic: ”Predicting Molecule Toxicity via Graph Neural Networks”

3. Journal Club of the Artificial Intelligence Research Institute (AIRI), Moscow,
Russia, 27 October 2021. Topic: ”Temporal graph embeddings”.

4. Internal seminar of the Sber Recommender Systems Platform, 26 October
2021. Topic: ”Review of the exploration in recommender systems”
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5. Internal seminar of the Sber Recommender Systems Platform, 8 July 2021.
Topic: ”Graph-based recommender systems”

6. Artificial Intelligence Journey, 20 December 2020. Topic: ”Eternal Student:
How to check whether adaptive recommender system learns”

7. 2nd International Workshop ”New Level of Visualization - New Level of An-
alytics” (NLVNLA-2020), 24 January 2020. Topic: ”Visualizing Structural
Data via Network Embeddings”

8. International Conference on Analysis of Images, Social Networks and Texts
(AIST-2019), 19 July 2019. Topic: ”Prediction of new itinerary markets for
airlines via network embedding”

9. 9th International Conference on Network Analysis (NET) 2019. 18 May
2022. Topic: ”Prediction of new itinerary markets for airlines via network
embedding”

5.4 Research approbation

The model proposed in the [20] was evaluated by Sber AI Lab in the bank down-
stream task. It was applied to the transaction graph between small and medium
enterprises (SMEs) to receive the dynamic SMEs representations. After, these
vectors were used to train the LightGBM [11] classifier to define whether the SME
would be bankrupted or not after six months. The proposed feature-extraction
approach performed competitively with existing bank sequential methods and sig-
nificantly outperformed other graph-based methods on a subsample of the trans-
actions graph.

Personal contribution to the papers. In [17] supervisor Ilya Makarov and
Lovro Subelj stated the problem, revised the manuscript and designed experi-
ments and overviewed the main part of the methods, author of the thesis con-
ducted the experiments, compared models, overviewed the applications and par-
tially overviewed the methods, and derived the open problems and conclusions,
Nikita Nikitinskiy also overviewed the applications to NLP problems and re-
vised the paper. In [19] supervisor Ilya Makarov stated the problem, revised the
manuscript and designed experiments, the author of the thesis conducted exper-
iments with complex fusion methods like GCN, GraphSAGE, GAT, and GIC,
derived the recommendations for practical use, and Mikhail Makarov conducted
the rest part of the experiments on the structural methods. In [18] supervisor
Ilya Makarov stated the problem, Ksenia Korovina developed the main part of
the pipeline, the author of the thesis revised it and enhanced the semi-supervised
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training strategy for the JONNEE model, conducted the experiments and com-
pared models. In [20] supervisor Ilya Makarov, Andrey Savchenko and Dmitrii
Babaev stated the problem, revised the manuscript and designed experiments,
Arseny Korovko and Leonid Sherstyuk implemented the core part of the frame-
work and realized novel model elements, Nikita Severin and author of the thesis
rewrote it to production-ready state, implemented state-of-the-art methods within
it and conducted more experiments, author of the thesis conducted the final exper-
iments, selected the best variation of model components and tuned it to achieve
the state-of-the-art results, revised the paper. Aleksandr Mikheev conducted the
experiments on internal Sber data. The paper [16] was fully developed by the au-
thor of the thesis with minor revision, consultations and discussion of experiments
and model design with Ilya Makarov.

The author of the dissertation is a corresponding author in papers [17, 19, 18].
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6 Contents

The section describes the general idea, results and novelty of each chapter in the
thesis. The name of the subsection corresponds to the name of the chapter (paper)
in the thesis.

Volume and structure of the work. The thesis contains an introductory
chapter, concluding chapter and content of five papers. The full volume of the
thesis with appendix is 160 pages.

6.1 Survey on graph embeddings and their applications to
machine learning problems on graphs

The first chapter of the thesis focus on the study and evaluation of existing ap-
proaches to graph embedding procedures. The work overview different types of
graphs including user-item interaction graphs, and their application to the recom-
mender systems. The main goal of the paper is to analyze and compare existent
models to encode graphs and estimate their efficiency in downstream tasks includ-
ing link prediction.

Methods to learn graph representations differs. The classic approach is to apply
matrix factorization to different matrix views of the graph like graph Laplacian,
multi-hop transition matrices and so on [4, 25, 1, 46, 40, 12]. In that way, graph
representation learning is similar to recommender systems. Recent methods exploit
the fact that the distribution of node occurrence in random walks is proportional
to its degree thereby and power law for real-world graphs [29]. The distribution
of the word occurrence in the natural language conforms to Zipf law which is also
similar to the power law [29]. So, the skip-gram approach can be applied to effi-
ciently learn node embeddings [23]. The methods in these groups usually differ in
the random walk sampling strategies that are designed to preserve specific graph
properties [29, 7, 36, 30]. Finally, the most modern graph embedding techniques
are provided by geometric deep learning. The Graph Convolution Network (GCN)
represents a node as a sequence of non-linear node features transformations and ag-
gregations over the neighborhood [14]. Such an approach approximates the spectral
decomposition preserving a lot of important graph properties. Graph Attention
Networks imply a similar idea but utilize an attention mechanism to learn better
aggregations over node neighborhood [43]. Message-passing framework generalizes
the Graph Neural Networks scheme decomposing process of node encoding in two
main steps: message encoding and neighborhood aggregation [6]. Message encod-
ing is the encoding of node features and placing them on the adjacent edge. The
aggregation step applies pooling to calculate the final representation of the node.
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Such a framework allows fast batch calculations of Graph Neural Network predic-
tion. GraphSAGE introduces the idea of sampling strategies to node neighborhood
to efficiently scale Graph Neural Networks on large graphs [8]. Generative graph
models follow the ideas of generative models from computer vision and natural
language processing: variational autoencoders, recurrent models and generative
adversarial networks. Moreover, such methods are frequently applied with other
self-supervised approaches to build more robust and generalizable models.

On the other hand, network embedding techniques can be categorized from
the point of different graph types and properties. To handle attributed graphs one
can apply methods of three general groups: concatenation of graph matrix repre-
sentation and feature matrix with further dimensionality reduction, initial graph
structure enhancement with edges from content-similarity graph and graph neural
networks. Heterogeneous graphs are usually handled by the separation of embed-
ding tasks for different types of nodes and edges. Random walk based methods
reformulate the optimization problem to optimize the similarity between nodes of
different types. GNNs for heterogeneous graphs apply the attention mechanism
in an intra- and inter-group fashion. The methods of dynamic graphs vary due
to different representations of such graphs: sequence of snapshots or sequence of
individual node and edge events. In the first case, one can separately learn net-
work embedding for each snapshot and infer the dynamics using recurrent models.
In the second one, recurrent models are applied personally to each node memory
and network aggregation is performed after the memory update. To handle large
graphs methods of two types were proposed: different mini-batch sampling tech-
niques to iterate over large graphs and graph coarsening to split it into smaller
parts and parallel computations.

The difference between different graph machine learning problems lies in the
additional domain-specific targets. For instance, classification models can be en-
hanced with metric losses to tighten the vectors of nodes from one class. In clus-
tering, it is popular to add modularity-based penalty after k-means or dbscan
clustering. Subgraph and graph embeddings add node and edge pooling tech-
niques.

As a result, we have derived several open problems. Firstly, dynamic graph
embeddings were poorly studied. Secondly, most of the models focus only on the
node representations omitting the edges and their features. Most of the models
are susceptible to poor scalability. However, methods for large graphs introduce a
lot of biases and have only a little theoretical justification for them. Finally, the
most important problem is the absence of generic graph embedding models and
strategies to select optimal encoding for a specific graph with specific properties.

Also, we conduct the experiment study of properties for network embedding
models of different types. The experiments aim to understand how specific network
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properties are aligned with the performance of the state-of-the-art models. Such
models are also examined on the different generative graph models to provide a
better understanding of network embeddings in a controllable environment.

The novelty of the paper is in the methodology to compare and evaluate graph
embedding methods for a specific graph-related machine learning problem. We
found that the classic structural embedding methods with the proper objective on
specific network properties provide competitive quality with complex deep learning
models in the downstream tasks.

As a result, we studied and compared different methods to handle graph struc-
ture. This step is essential to build graph-based recommender systems with col-
laborative knowledge.

The paper was published in the PeerJ Computer Science Journal. It is indexed
as Q1 (2020) and Q2 (2021) in Scopus.

6.2 Fusion of text and graph information for machine learn-
ing problems on networks

The chapter solves the second task: fusion of content and collaborative information
for node classification and link predictions (recommendation) problems.

Previously, the studies in the network embedding fields were focused only on
the structural part of the embedding and aims to preserve the structural informa-
tion better. Due to this problem, the papers on the graph neural networks and
other embedding techniques considered only a simple text encoding strategy like
Bag-of-Words [9] or Tf-Idf [37]. However, the more important problem raised in the
previous chapter is how to properly balance the trade-off between information from
the node attributes and the structural network properties. The current chapter
is aimed to propose such strategies to efficiently handle text attributes within the
framework of graph machine learning problems. So, we study the advanced meth-
ods for text encoding: LDA [3], word2vec [24], sent2vec [27], Sentence BERTS [33]
and ERNIE [41]. Firstly, we understand whether the text information is enough to
solve the node classification and link prediction problems. Next, we analyze how
this information can be integrated within the graph embedding framework. Differ-
ent strategies are established: naive fusion (concatenation) of structural [25, 29, 7]
and text embeddings, complex matrix factorization techniques [51, 28] and graph
neural networks [13, 8, 44, 22]. Moreover, the graph neural networks were also
trained and validated in an end-to-end fashion to provide the best performance on
the downstream problems.

The main conclusions of the work are the following. Firstly, we found that
complex text encoding strategies allow significantly boost the performance of the
structural models in link prediction and node classification problems. Secondly,
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we show that SBERT text encoding benefits more the link prediction problem and
Sent2Vec the node classification. Finally, we propose the modification of GCN
architecture.

The novelty of the study lies in the new view on the graph machine learn-
ing problems and accounting for the complex text encoding strategies that allow
boosting the performance in practical applications.

As a result, we have shown that for a successful solution of the link prediction
(recommendation) problem only structural information is not enough. The model
should consider content features too. Moreover, we analyzed different fusion tech-
niques and showed the efficiency of modern text encoding models. Such graphs are
one of the most popular in real-world recommender systems, e.g. social networks,
media, descriptions of consumer goods on marketplaces and so on.

The paper was published in the PeerJ Computer Science Journal. It is indexed
as Q1 (2020) and Q2 (2021) in Scopus.

6.3 JONNEE: Joint network nodes and edges embedding

The current chapter focuses on the problem of edge attribute awareness in graph
neural networks. Previously, most papers worked with the node attributes only
or with simple edge-weighted graphs. The goal of the model is to provide the
framework within which such attributes could be efficiently employed.

The general idea of the model (Figure 6 is to utilize well-studied node embed-
ding techniques to edges. To do it, we apply the VGAE to a Line graph where the
original edges play the role of the nodes. Thus, applying similar models to other
graph representations we can build fine-grained edge embeddings aware of edge
context. However, both models should agree on their representations of nodes and
edges. So, we propose a novel self-supervised training procedure. We propose a
joint loss function based on the following components

1. Reconstruction loss of autoencoders for both graphs

LG = ∥A− Â∥2F ∼ 1

|V |2
∑
i,j

(âij − aij)
2 (1)

LG∗ = ∥A∗ − Â∗∥2F ∼ 1

|E|2
∑
i,j

(â∗ij − a∗ij)
2 (2)

2. Joint loss function (f and f∗ are node embeddings for graph and its Line
correspondingly, N(v) is a set of node neighbors)
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Figure 6: JONNEE architecture

LG∗→G =
∑
v∈V

∥f(v)− 1

|NG(v)|
∑

u∈N(v)

f ∗((u, v))∥22 (3)

LG→G∗ =
∑

e=(u,v)∈E

∥f ∗(e)−

∑
t∈NG(u)∪NG(v)

f(t)

|NG∗(e)|
∥22 (4)

3. L2-regularization for both graphs
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The most important part of the loss is the equations 3 and 4. The main idea
is to anchor representations of both encoders to each other. Such loss tightens the
original graph node embeddings to the mean of corresponding edge vectors in the
Line graph and vice-versa. Formulae 1 and 2 are required to train autoencoders
themselves. Finally, we apply regularization for embeddings to reduce the model
complexity and over-fitting.

Despite the better edge embeddings, the model is more computationally com-
plex due to a large sparse Line graph. To reduce the complexity and fasten con-
vergence we initialize models with random walk based embeddings: node2vec or
diff2vec.

The proposed framework performs competitively with the state-of-the-art semi-
supervised deep learning models in the link prediction and node classification tasks.
The performance of the model is high in both unsupervised and semi-supervised
strategies. It provides well-clustered visual representations of the network.

The novelty of the JONNEE is twofold. Firstly, it enhances the classic varia-
tional graph autoencoders with the node sequence-encoding strategies. Secondly,
it is trained by the novel self-supervised method that tightens node representations
with its dual-edge representations of a Line graph.

The JONNEE is an important step to build context-aware recommender sys-
tems. Firstly, it improves the edge vectors for the link prediction problem. Sec-
ondly, it allows for preserving the decision context of the user. Decision context is
essential in a lot of cases, e.g. music recommendations where the user consumes
different playlists based on the current situation (work, party).

The paper was published in IEEE Access. It is indexed as Q1 in Scopus and
Web of Science.

6.4 Temporal network embedding framework with causal
anonymous walks representations

The chapter studies the problem of graph dynamics. One of the main focuses lies
in the dynamic heterogeneous interaction networks that are the generalization of
the user-item interaction graphs from recommender systems.

In this chapter, we describe a novel network embedding that combines the
best elements of the efficient Temporal Graph Network embedding (TGN) ([35])
and Causal Anonymous Walks (CAW) ([48]). We choose the TGN as a backbone
because it generalizes most existing temporal graph embedding models via flexible
modular architecture. It allows updating node memory in a fast and expressive
manner. Also, more modern models like APAN ([47]) or HiLi ([47]) follow a similar
paradigm of passing messages through the memory module. The CAW provides
an opposite view on the graph evolution problem. It rejects the idea of memory
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and anonymizes each node. Instead, it aimed to build such a model, which can
implicitly exploit laws of specific graph evolution ignoring node identities. As
a result, CAW is unable to create node embedding but can significantly impact
model quality by taking into account changes in the graph structure. The fusion
of two opposite ideas allows to build more precise network encoding methods. To
include CAW features into TGN we concatenate its representation before adding
it to the memory and before the final embedding layer.

The second important contribution of the chapter is a standardized framework
for the training and validation of temporal network embeddings. It provides stan-
dardized wrappers and abstractions to prepare graphs, select batching types and
parameters, split data for transductive and inductive (cold-start) subsamples, flex-
ible interfaces for model development and a unified pipeline to train and validate
models.

The novelty of the research is twofold. Firstly, we propose a novel model that
fixes the problems of the TGN and CAW models by fusing their architectures.
Secondly, we propose a unified framework for the evaluation of temporal embed-
ding techniques in downstream graph machine learning tasks. It allows flexible
integration of various models and different temporal network data under a unified
evaluation framework.

In addition, we prove the effectiveness of the proposed pipeline and its sub-
modules via an extensive ablation study and provide the industrial application
of the proposed approach involving the transaction data of a major European
bank. We showed that feature enrichment of temporal attention over temporal
edge random walks improves quantitative and qualitative results in the real-world
application of machine learning tasks on a banking graph.

The experimental study demonstrates the applicability of our method to solve
various node/edge prediction tasks on temporal networks and to significantly im-
prove the existing results.

Graph temporality preservation allows the development of recommender sys-
tems capable to catch causality and dynamics of user behavior, and being able to
adapt to it.

The paper was published in the PeerJ Computer Science Journal. It is indexed
as Q1 (2020) and Q2 (2021) in Scopus.

6.5 Exploration in sequential recommender systems via
graph representations

The last chapter studies the exploration of poorly known user-item pairs (states)
and the corresponding exploration-exploitation trade-off. The underlined problem
is to find the new possible interests of the users while their behavior changes
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that lead to performance degradation in recommendations and embeddings. The
goal of the chapter is to develop novel exploration strategies based on a graph
representation of recommender systems problems. To provide exploration we adopt
the concept of self-supervised intrinsic motivation from reinforcement learning [52]
and bring it to the graph domain.

Figure 7: Exploration strategies

The user-item graph is a power-law graph. Thus, new edges in it create between
the most popular nodes (Figure 7). So, the exploitation strategy introduces a bias
toward the most popular items. In the case of active dynamics in user behavior
such nodes become non-relevant anymore. Based on this, we design an exploration
strategy based on the personalized PageRank (PPR) ideas [26]. It estimates the
local popularity of items near the user. To handle the dynamics, we have modified
the PPR to account for only recent temporal information. In our case, random
walks are short (length 3) and causal (each next edge occurs before the current).
Next, we calculate the number of occurrences of items and add the inverse of it as
an exploration bonus to the exploitation scores.

The second exploration method is based on the small-world property. Despite
the high density of the user-item interaction graphs, we observe the problem that
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the recently added edges are hard to obtain in such graphs. Thus, the probability
to aggregate messages from novel nodes is very low. So, we want to add such edges
that connect distant nodes to ease the search for the most relevant items. To do
it, we perform community detection and connect nodes from distant communities.
However, graph clustering is a computationally complex problem. So, we apply
the soft-clustering technique. Firstly, it projects graph nodes via GNN in fixed-
size space (128). Then, we normalize each embedding with softmax to receive the
cluster-assignment vector. Finally, we add an exploration bonus as the cluster-
assignment probability of a user divided by the cluster-assignment probability of
an item.

The results of the paper show the importance of exploration techniques for the
online model adaptation. Models benefit from different types of exploration if the
temporal structure is properly presented. The relative performance of exploration
methods depends on data properties. For the graphs with few positive edges, it
is better to use the personalized PageRank approach. In this case, it samples less
diverse nodes and can better estimate the local popularity. On the opposite, graph
clustering exploration performs better for the graphs with a large average degree
of the node.

The proposed strategies show competitive performance with the other explo-
ration strategies for recommender systems. In the future, we aim to apply the
proposed techniques to repeated consumption scenarios. Further, we aim to study
proposed exploration strategies in more complex model pipelines like multi-stage
recommender systems. Also, it is important to study the proposed techniques for
heterogeneous graphs when items and users have different types.

This paper is under review in the IEEE Access Journal. It is rated as Q1 in
Web of Science and Scopus.
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7 Conclusion

The thesis is based on the published papers [17, 19, 18, 20] and paper [16] which
are currently under review in the IEEE Access Journal. The papers [17, 19] ana-
lyze the current achievements in the field and conduct an empirical study of the
state-of-the-art network embedding techniques and fusion methods, derive prac-
tical tips. The papers [18, 20, 16] propose novel models and methods to solve
the important graph-based recommender systems issues: context (edge) features
awareness, causality, feedback loop and data distribution shift. Together all papers
allow solving required tasks to develop the graph-based recommender system and
solve its problems caused by environmental dynamics.

The main contributions of this thesis to be defended are the following:

1. We suggested the detailed taxonomy of the network embedding techniques
and their applications [17]

2. We conducted benchmarking of the state-of-the-art graph embedding tech-
niques in the link prediction problem [17]

3. We provided the methodology to automatically extract features in the text-
attributed graphs for link prediction and node classification [19]

4. We proposed novel self-supervised joint network node and edge embedding
based on consistent Line graph representation [18]

5. We suggested novel temporal network embedding achieving state-of-the-art
results in various temporal graph machine learning tasks [20]

6. We developed a standardized temporal network embedding evaluation frame-
work and comparison of state-of-the-art models under a common training
setting, providing new insights and clarification of real-world performance
compared to those reported in the original research articles [20]

7. We provided novel Personalized PageRank [26] based exploration strategy
[16]

8. We implemented novel small-world [49] based exploration strategy [16]

9. We described the methodology to apply proposed exploration methods to
recommender system with online adaptation in dynamic environments [16]
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Directions of future research. Further research problems can be derived from
the results of the paper. One of the important findings of the [17] is the lack of
meta-strategies to select proper embedding techniques for a specific task in Au-
toML fashion. The [19] can be extended by applying self-supervised techniques
and losses for better joint pretraining of the text and structural encoders. Another
prominent way is to reverse the focus from the graph machine learning tasks to
the specific problems in information retrieval (e.g. fast first model in multi-stage
recommender systems) or Natural Language Processing like in [53]. The main
drawback of the JONNEE model [18] is the lack of scalability. To empower work
on larger datasets the backbone model in JONNEE can be changed to the fast
sampling-based GNNs. Another direction is to analyse the performance of JON-
NEE on the recommender systems dataset with context information. The paper
[20] can be also enhanced by applying scalability techniques. The interactive graph
exploration [16] strategies are susceptible to the over-smoothing issue. So, they
can be improved by applying differential group normalizations [54] or by pruning
a graph on several subgraphs based on the current user context. Another direc-
tion for [16] is to consider the heterogeneous edges for different types of user-item
interactions like negative or positive feedback, purchase or adding to cart and so
on.

25



References

[1] Sami Abu-El-Haija, Bryan Perozzi, and Rami Al-Rfou. Learning edge repre-
sentations via low-rank asymmetric projections. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, CIKM ’17,
page 1787–1796, New York, NY, USA, Nov 2017. Association for Computing
Machinery.

[2] Gediminas Adomavicius, Jesse C Bockstedt, Shawn P Curley, and Jingjing
Zhang. Effects of online recommendations on consumers’ willingness to pay.
Information Systems Research, 29(1):84–102, 2018.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet alloca-
tion. Journal of machine Learning research, 3:993–1022, 2003.

[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph rep-
resentations with global structural information. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Manage-
ment, CIKM ’15, page 891–900, New York, NY, USA, 2015. Association for
Computing Machinery.
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[42] Gábor Takács and Domonkos Tikk. Alternating least squares for personal-
ized ranking. In Proceedings of the sixth ACM conference on Recommender
systems, pages 83–90, 2012.

29
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